python多个线程锁可提高效率吗
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python多个线程锁可提高效率吗相关的知识,希望对你有一定的参考价值。
首先,Python的多线程本身就是效率极低的,因为有GIL(Global Interpreter Lock:全局解释锁)机制的限制,其作用简单说就是:对于一个解释器,只能有一个线程在执行bytecode。所以如果为了追求传统意义上多线程的效率,在Python界还是用多进程(multiprocessing)吧……
这里你用了多线程,且用了锁来控制公共资源,首先锁这个东西会导致死锁,不加锁反而没有死锁隐患,但会有同步问题。
另外,如果不同线程操作的是不同的文件,是不存在同步问题的,如果操作同一个文件,我建议采用Queue(队列)来处理。
总的来说,用单线程就好了,因为Python多线程本身就没什么效率,而且单线程也不用考虑同步问题了。非要追求效率的话,就用多进程吧,同样也要考虑进程锁。 参考技术A 如果你的代码是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有context switch但是:如果你的代码是IO密集型,多线程可以明显提高效率。例如制作爬虫(我就不明白为什么Python总和爬虫联系在一起…不过也只想起来这个例子…),绝大多数时间爬虫是在等待socket返回数据。这个时候C代码里是有release GIL的,最终结果是某个线程等待IO的时候其他线程可以继续执行。反过来讲:你就不应该用Python写CPU密集型的代码…效率摆在那里…如果确实需要在CPU密集型的代码里用concurrent,就去用multiprocessing库。这个库是基于multi process实现了类multi thread的API接口,并且用pickle部分地实现了变量共享。再加一条,如果你不知道你的代码到底算CPU密集型还是IO密集型,教你个方法:multiprocessing这个module有一个dummy的sub module,它是基于multithread实现了multiprocessing的API。假设你使用的是multiprocessing的Pool,是使用多进程实现了concurrencyfrom multiprocessing import Pool如果把这个代码改成下面这样,就变成多线程实现concurrencyfrom multiprocessing.dummy import Pool两种方式都跑一下,哪个速度快用哪个就行了。UPDATE:刚刚才发现concurrent.futures这个东西,包含ThreadPoolExecutor和ProcessPoolExecutor,可能比multiprocessing更简单
以上是关于python多个线程锁可提高效率吗的主要内容,如果未能解决你的问题,请参考以下文章