Opencv:Jetmap或colormap为灰度,反向applyColorMap()
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Opencv:Jetmap或colormap为灰度,反向applyColorMap()相关的知识,希望对你有一定的参考价值。
要转换为色彩映射,我做
import cv2
im = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)
im_color = cv2.applyColorMap(im, cv2.COLORMAP_JET)
cv2.imwrite('colormap.jpg', im_color)
然后,
cv2.imread('colormap.jpg')
# ??? What should I do here?
显然,以灰度(使用, 0
)读取它不会神奇地给我们灰度,所以我该怎么做?
答案
您可以创建颜色映射的反转,即从颜色映射值到关联灰度值的查找表。如果使用查找表,则需要原始色彩映射的精确值。在这种情况下,假彩色图像很可能需要以无损格式保存,以避免颜色被改变。可能有更快的方法在numpy数组上进行映射。如果无法保留精确值,则需要在逆映射中进行最近邻居查找。
import cv2
import numpy as np
# load a color image as grayscale, convert it to false color, and save false color version
im_gray = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imwrite('gray_image_original.png', im_gray)
im_color = cv2.applyColorMap(im_gray, cv2.COLORMAP_JET)
cv2.imwrite('colormap.png', im_color) # save in lossless format to avoid colors changing
# create an inverse from the colormap to gray values
gray_values = np.arange(256, dtype=np.uint8)
color_values = map(tuple, cv2.applyColorMap(gray_values, cv2.COLORMAP_JET).reshape(256, 3))
color_to_gray_map = dict(zip(color_values, gray_values))
# load false color and reserve space for grayscale image
false_color_image = cv2.imread('colormap.png')
# apply the inverse map to the false color image to reconstruct the grayscale image
gray_image = np.apply_along_axis(lambda bgr: color_to_gray_map[tuple(bgr)], 2, false_color_image)
# save reconstructed grayscale image
cv2.imwrite('gray_image_reconstructed.png', gray_image)
# compare reconstructed and original gray images for differences
print('Number of pixels different:', np.sum(np.abs(im_gray - gray_image) > 0))
以上是关于Opencv:Jetmap或colormap为灰度,反向applyColorMap()的主要内容,如果未能解决你的问题,请参考以下文章