ORB-SLAM2 运行 —— ROS + Android 手机摄像头

Posted Mingrui

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ORB-SLAM2 运行 —— ROS + Android 手机摄像头相关的知识,希望对你有一定的参考价值。

转载请注明出处,谢谢
原创作者:Mingrui
原创链接:https://www.cnblogs.com/MingruiYu/p/12404730.html


本文要点:

  • ROS 配置安装
    • 解决 sudo rosdep init 报错 Website may be down.
  • ORB-SLAM2 ROS 配置安装
    • 解决报错 DSO missing from command line
  • Android 手机摄像头与 PC 进行基于 ROS 的通信
  • 手机摄像头标定
    • 采集标定图像
    • OpenCV samples 相机标定例程
  • 使用 Android 手机摄像头,运行 ORB-SLAM2 ROS Mono
  • 简化启动
    • 使用 gnome-terminal,一个脚本运行多个终端

写在前面

最近研究 ORB-SLAM2,自然是想能自己实时跑一跑。但最近因为疫情只能待在家里,身边能当摄像头的东西好像只有笔记本摄像头和手机摄像头。笔记本摄像头不方便(特别是我的 matebook 14 这个在键盘上的弹出摄像头,如想实现可参考),所以选择使用手机摄像头。ORB-SLAM2 官方提供了 ROS 的支持,再结合网上各路大佬提供的工具,最终实现了以 Android 手机摄像头为输入,基于 ROS 在 PC 上实时运行 ORB-SLAM2 Mono。本文将从零开始,介绍如何实现这一目标。

本文环境为:

  • Ubuntu 18.04
  • ROS Melodic
  • Android 手机(MI 9 SE)

ROS 配置安装

首先是 ROS 的配置安装,参照 ROS 官方安装教程,其中第一步使用国内镜像:

sudo sh -c \'. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ $DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list\'

sudo rosdep init 出错

安装步骤中 sudo rosdep init 报错:

ERROR: cannot download default sources list from:
https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/sources.list.d/20-default.list
Website may be down.

首先试一试在浏览器中能不能打开,如果打不开的话,说明该网站需要翻。

因为在终端中安装,所以光浏览器能翻不够,还得配置终端翻。如果使用的是 ss 的话,终端还需要额外配置。配置方法可自行 google。

成功配置终端后,如果还报这个错,则需要:

sudo c_rehash /etc/ssl/certs 
sudo -E rosdep init

之后再 rosdep update 就可以了。

学习教程

ROS-Tutorials

ORB-SLAM2 ROS 配置安装

编译

ORB-SLAM2 的配置安装可见 raulmur/ORB_SLAM2。之前的博文 ORB-SLAM2 初体验 —— 配置安装 中介绍了不包括 ROS 支持的 ORB-SLAM2 配置安装。包括 ROS 支持的配置安装可见 raulmur/ORB_SLAM2#7-ros-examples

在 ~/.bashrc 中添加 ORB-SLAM2 path 至 ROS_PACKAGE_PATH

# 打开 ~/.bashrc
sudo gedit ~/.bashrc

# 添加
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS
# (注意修改 PATH 为自己 ORB-SLAM2 的目录)

NOTICE:

  • ${ROS_PACKAGE_PATH}:和PATH之间不能有空格。
  • 添加的位置要在之前添加的其它的 source 命令之后。

之后进行编译:

cd PATH/ORB_SLAM2
chmod +x build_ros.sh

./build_ros.sh

会报错:DSO missing from command line

解决方法:ERROR while running ./build_ros.sh #535

运行

例如运行单目 ORB-SLAM2:

rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

下文会详细介绍如何运行。

Android 手机摄像头与 PC 进行基于 ROS 的通信

该实现基于 GitHub 上的一个项目:hitcm/Android_Camera-IMU,作者实现了将手机的摄像头信息和 IMU 信息传给 PC(可参考作者博文 ROS实时采集Android的图像和IMU数据)。本文中,我们只需使用摄像头信息。

git clone https://github.com/hitcm/Android_Camera-IMU.git

sudo apt-get install ros-melodic-imu-tools  # 修改对应自己的 ROS 版本(本文中其实不需要)

将 clone 下来的文件夹中已经编译好的 apk 拷到 Android 手机上,在手机上安装。并将 PC 和 Android 手机 置于同一局域网下。

运行方式:

PC Terminal 1: roscore

Android: 打开应用,在 在 IP Port 中修改 IP 地址为 PC的 IP地址,port不需要修改(PC 的 IP 可在 PC 终端输入 ifconfig 查看),之后点击 Connect,连接成功则进入相机界面。

PC Terminal 2:

cd Android_Camera-IMU
roslaunch android_cam-imu.launch

之后会弹出一个 Rviz 界面:

  • 如果要实时显示 image,需要 Add - By topic - 添加/camera/image_raw/image。
  • 如果要显示 imu,则需要 Add - By topic - 添加 imu,且在 Fix Frame 中 将 map 改为 imu。

手机摄像头标定

为了 ORB-SLAM2 准确运行,需要对手机摄像头进行标定。标定方式为:对棋盘格标定板进行各个方向的拍照,之后基于 OpenCV 进行标定。注意这里采集的图片需要和 ORB-SLAM2 程序读取到的一致,所以不能直接使用手机自带相机 app 拍照,因为手机会自动通过算法进行校正,而上述通信传输的是 raw images。因此,首先我们需要完成的任务是:采集并保存摄像头图像。

使用下图作为标定板(参考资料),可直接在电脑屏幕上显示,对其拍照即可。

注意:

  • 实验发现,使用长宽格数不一样的棋盘标定板效果更好。
  • 实验发现,标定板周围要是白色的才行,黑色的提取不出角点来(在电脑屏幕上显示标定板时尤其需要注意)。
  • 摄像头需要从不同方向拍摄棋盘格,可参考 OpenCV 安装目录下 samples/data 中的 left0x.jpg 系列标定图片。

采集并保存图片

目前没有找到直接保存的方法,所以我们选择写一个 ROS node 来接收手机传来的图像,再通过 OpenCV 进行显示和保存。

为了方便,我们选择直接在 ORB-SLAM2 的 ros_mono.cc 的代码基础上进行修改,在 ros_mono.cc 同一目录下写了个 ros_camera_capture.cc:

/**
* This file is to capture images from Android phone, for camera calibration
* This file is used with Android_Camera-IMU
*/

#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>

#include<ros/ros.h>
#include <cv_bridge/cv_bridge.h>

#include<opencv2/core/core.hpp>

#include"../../../include/System.h"

using namespace std;

string save_dir = "PATH"; // 修改为自己保存图片的路径
int imgId = 0;

void GrabImage(const sensor_msgs::ImageConstPtr& msg);

int main(int argc, char **argv)
{

    std::cout << "To save the current frame, please press \'Q\' or \'q\' " << std::endl;
    std::cout << "The images will be saved to " <<  save_dir << std::endl;

    ros::init(argc, argv, "PClistener");
    ros::start();

    ros::NodeHandle nodeHandler;
    ros::Subscriber sub = nodeHandler.subscribe("/camera/image_raw", 1, GrabImage);

    ros::spin();

    ros::shutdown();

    return 0;
}

void GrabImage(const sensor_msgs::ImageConstPtr& msg)
{
    string imgname;
    cv_bridge::CvImageConstPtr cv_ptr;
    try
    {
        cv_ptr = cv_bridge::toCvShare(msg);
        cv::Mat img = cv_ptr->image;
        cv::imshow("img_name", img);

        char key = cv::waitKey(1);
        // press "q" to save the image 
        if(key == \'q\' || key == \'Q\'){  
            imgId++;
            imgname = "img_" + to_string(imgId) + ".jpg";
            cv::imwrite(save_dir + imgname, img);
            std::cout << "has saved image "<< imgId << " to " << save_dir << std::endl;
        }
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }
}

注意修改其中保存图像的目录。

另外,在 ORB_SLAM2/Examples/ROS/ORB_SLAM2 目录中的 CMakeLists.txt 中添加如下内容(添加在 # Node for monocular camera 上方即可):

# Node for capture images for camera calibration
rosbuild_add_executable(CameraCapture
src/ros_camera_capture.cc
)

target_link_libraries(CameraCapture
${LIBS}
)

之后重新编译 ORB_SLAM2 项目。

cd PATH/ORB_SLAM2
./build_ros.sh

使用方法:

Terminal 1:

roscore

手机进入 app 运行

Terminal 2: 在 Android_Camera-IMU 目录

roslaunch android_cam-imu.launch

(可以关掉 Rviz)

Terminal 3:

rosrun ORB_SLAM2 CameraCapture

鼠标选中图像框,按下 q 键保存图像。

进行标定

使用 OpenCV samples 中的代码实现。参考资料

标定例程

新建一个工作目录(文件夹)camera_calibration_opencv,将 OpenCV 安装目录中的 samples/cpp/tutorial_code/calib3d/camera_calibration 文件夹内的内容拷贝至该目录。

修改 VID5.xml

VID5.xml 中存储着标定图像的路径,所以要在 VID.xml 中添加所有标定图像的路径,eg:

<?xml version="1.0"?>
<opencv_storage>
<images>
PATH/img_1.jpg
PATH/img_2.jpg
PATH/img_3.jpg
</images>
</opencv_storage>

修改 in_VID5.xml

<BoardSize_Width> 9</BoardSize_Width>
<BoardSize_Height>6</BoardSize_Height>

表示棋盘格的宽和高,注意,这里的宽度和高度是指内部交叉点的个数,而不是方形格的个数。如上图棋盘的数据就是9和6。

<Square_Size>20</Square_Size>

修改为每格的边长 (mm),拿尺子量。

<Input>"VID5.xml"</Input>

修改 VID5.xml 的路径。

<Calibrate_FixPrincipalPointAtTheCenter> 1 </Calibrate_FixPrincipalPointAtTheCenter>

此处原来是0,需要改为1,表示引入切向畸变参数(因为 ORB-SLAM2 中也引入了切向畸变参数),否则只有径向畸变参数。

其它地方应该不需要改动,想进一步了解可看其中的注释。

编译

在工作目录 camera_calibration_opencv 中新建 CMakeLists.txt:

project(Camera_Calibration)
set(CMAKE_CXX_STANDARD 11)

find_package(OpenCV 3.0 QUIET)
if(NOT OpenCV_FOUND)    
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()

include_directories(${OpenCV_INCLUDE_DIR})
add_executable(Camera_Calibration camera_calibration.cpp)
target_link_libraries(Camera_Calibration ${OpenCV_LIBS})

之后编译:

cd camera_calibration_opencv
mkdir build
cd build
cmake ..
make

运行,标定

cd camera_calibration_opencv
./build/Camera_Calibration in_VID5.xml

程序启动后会显示标定图像的角点提取情况,之后会显示校正后图像,一个一个全部关闭后才会保存标定参数至 out_camera_data.xml。

参数填入 ORB-SLAM2 的配置文件

参数输出在 out_camera_data.xml 中:

  • <camera_matrix type_id="opencv-matrix"> 是相机内参矩阵,顺序为 fx, 0, cx; 0, fy, cy; 0, 0, 1。
  • <distortion_coefficients type_id="opencv-matrix"> 是畸变参数,其顺序为 k1, k2, p1, p2, k3。

之后在 ORB_SLAM2 中新建一个配置文件 AndroidPhone.yaml(建哪儿都行,我为了方便就和 TUM1.yaml 放在了一个目录下),将 TUM1.yaml 的内容拷贝过来,并把其中的 Camera 参数进行修改。

注意: 相机参数对 ORB-SLAM2 的运行效果有极大影响(尤其是初始化),所以标定过程须认真完成。

运行 ORB-SLAM2 Mono

Terminal 1:

roscore

手机进入 app 运行

Terminal 2: 在 Android_Camera-IMU 目录

roslaunch android_cam-imu.launch

(可以关掉 Rviz)

Terminal 3:

rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

运行效果展示:

注意: ORB-SLAM2 Mono 还是比较难以初始化的(其设置的初始化条件相对苛刻),在开始时,选择特征纹理丰富的区域,多上下左右平移相机,有利于初始化。

简化启动

上述启动步骤需要启动3个终端,挺麻烦的,所以可以选择写一个脚本来自动启动这3个终端。参考资料

新建 ORB_SLAM2_with_AndroidPhone.sh,在其中填入:

gnome-terminal --title="roscore" -x bash -c "roscore"
# 暂停 2s,保证几个不同终端的启动顺序
sleep 2s;  

gnome-terminal --title="AndroidPhone" -x bash -c "cd PATH/Android_Camera-IMU; roslaunch android_cam-imu.launch"
sleep 2s;

gnome-terminal --title="ORB-SLAM2" -x bash -c "rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE"

之后赋予权限(仅需一次):

chmod +x ORB_SLAM2_with_AndroidPhone.sh

运行:

./ORB_SLAM2_with_AndroidPhone.sh

即可一次性打开3个终端,并运行相关命令。之后手机再打开 app 就可以了。

注意: 此时终端运行结束后会自动退出,如果不想自动退出,可 在terminal点右键,选择Profiles->Profile Preferences然后找到Title and Command,里面有一项When command exits,后面选择为Hold the terminal open。参考资料

参考资料

ORB-SLAM2 系列博文

ORB-SLAM2 系列博文

以上是关于ORB-SLAM2 运行 —— ROS + Android 手机摄像头的主要内容,如果未能解决你的问题,请参考以下文章

Ubuntu20.04下运行VINS-MonoGVINS

Ubuntu下ROS&&Kinect&&ORB-SLAM环境搭建

ORB-SLAM编译记录

ORB-SLAM2初步(源码逻辑分析)

论文:ORB-SLAM:a Versatile and accurate Monocular SLAM System

基于ORB-SLAM2的图片识别