链表之SLIST

Posted 车子 chezi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了链表之SLIST相关的知识,希望对你有一定的参考价值。

文章目录

背景

对于 C 语言,在编程中需要用到链表时,通常需要程序员重新设计链表的结构体。这样做不仅麻烦,且需要验证代码的正确性,对于每个阅读代码的人,还需要重新理解。

如果有统一的接口,岂不是更好?

在 FreeBSD 中有 queue.h 这样一个头文件(Linux 也有,文件路径是 /usr/include/x86_64-linux-gnu/sys/queue.h,可以查阅 manual 手册的queue(3) )。

头文件 queue.h 为 C 语言中的链表提供了更加标准规范的编程接口。如今的版本多为伯克利加州大学1994年8月的8.5版本(8.5 (Berkeley) 8/20/94)。

queue 分为 SLIST、LIST、STAILQ、TAILQ、CIRCLEQ ,不同的链表有着不同的功能支持。queue 的所有源码都是宏定义,因此完全包含于queue.h当中,无需编译为库文件。

我拿到的 queue.h 一共 500 多行,代码会在本文的末尾附上,不同的版本可能不太一样。

建议:如果你想在你的项目中使用它,最好的选择是将你最喜欢的一个复制到你的项目中并使用它。不要依赖操作系统。它只是一个带有一堆宏的头文件,不需要库或任何依赖项即可工作。

SLIST 简介

SLIST 是 Singly-linked List 的缩写,意为单向无尾链表。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WuRai1gC-1644726064142)(pics/image-20220101164926598.png)]

SLIST 是最简单的结构,它适合数据量非常大而几乎不需要删除数据的场合,又或者当做栈使用。

接口和实现

/*
 * Singly-linked List declarations.
 */
#define	SLIST_HEAD(name, type)                          \\
struct name                                            \\
    struct type *slh_first;	/* first element */         \\


#define	SLIST_HEAD_INITIALIZER(head)                    \\
     NULL 

#define	SLIST_ENTRY(type)                               \\
struct                                                 \\
    struct type *sle_next;  /* next element */          \\


/*
 * Singly-linked List functions.
 */
#define SLIST_EMPTY(head)   ((head)->slh_first == NULL)

#define SLIST_FIRST(head)   ((head)->slh_first)

#define SLIST_FOREACH(var, head, field)                 \\
    for ((var) = SLIST_FIRST((head));                   \\
        (var);                                          \\
        (var) = SLIST_NEXT((var), field))

#define SLIST_INIT(head) do                            \\
        SLIST_FIRST((head)) = NULL;                     \\
 while (0)

#define SLIST_INSERT_AFTER(slistelm, elm, field) do            \\
    SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field);   \\
    SLIST_NEXT((slistelm), field) = (elm);                      \\
 while (0)

#define SLIST_INSERT_HEAD(head, elm, field) do             \\
    SLIST_NEXT((elm), field) = SLIST_FIRST((head));         \\
    SLIST_FIRST((head)) = (elm);                            \\
 while (0)

#define SLIST_NEXT(elm, field)	((elm)->field.sle_next)

#define SLIST_REMOVE(head, elm, type, field) do            \\
    if (SLIST_FIRST((head)) == (elm))                      \\
        SLIST_REMOVE_HEAD((head), field);                   \\
                                                           \\
    else                                                   \\
        struct type *curelm = SLIST_FIRST((head));          \\
        while (SLIST_NEXT(curelm, field) != (elm))          \\
            curelm = SLIST_NEXT(curelm, field);             \\
        SLIST_NEXT(curelm, field) =                         \\
            SLIST_NEXT(SLIST_NEXT(curelm, field), field);   \\
                                                           \\
 while (0)

#define SLIST_REMOVE_HEAD(head, field) do                          \\
    SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field);   \\
 while (0)

举例

光看代码可能会头晕,我们用例子来说明。

例子来自 https://man7.org/linux/man-pages/man3/SLIST_ENTRY.3.html

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry 
    int data;
    SLIST_ENTRY(entry) entries;            
;

SLIST_HEAD(slisthead, entry);


int main(void)

    struct entry *n1, *n2, *n3, *np;
    struct slisthead head;      /* Singly linked list head */
    SLIST_INIT(&head);                      /* Initialize the queue */

    n1 = malloc(sizeof(struct entry));      /* Insert at the head */
    SLIST_INSERT_HEAD(&head, n1, entries);

    n2 = malloc(sizeof(struct entry));      /* Insert after */
    SLIST_INSERT_AFTER(n1, n2, entries);

    SLIST_REMOVE(&head, n2, entry, entries);/* Deletion */
    free(n2);

// 删除第一个节点
    n3 = SLIST_FIRST(&head);
    SLIST_REMOVE_HEAD(&head, entries);      /* Deletion from the head */
    free(n3);

    for (int i = 0; i < 5; i++) 
        n1 = malloc(sizeof(struct entry));
        SLIST_INSERT_HEAD(&head, n1, entries);
        n1->data = i;
    
    
    /* Forward traversal */
    SLIST_FOREACH(np, &head, entries)
        printf("%i\\n", np->data);

    while (!SLIST_EMPTY(&head))            /* List deletion */
        n1 = SLIST_FIRST(&head);
        SLIST_REMOVE_HEAD(&head, entries);
        free(n1);
    
    SLIST_INIT(&head);

    exit(EXIT_SUCCESS);

代码分析

我们一点一点分析。

SLIST_ENTRY 和 SLIST_HEAD

先看结构体的定义

struct entry 
    int data;
    SLIST_ENTRY(entry) entries;            
;
SLIST_HEAD(slisthead, entry);

需要注意,上面有 3 个 entry,不管叫什么名字,必须一致;

int data; 是用户数据,根据需要添加;

entries 是

struct struct entry *sle_next;

类型的成员(注:这个结构体没有标签),entries 也可以换成别的名字;

slisthead 是链表头结构体的标签名。

宏替换后就是

struct entry 
    int data;
    struct  
        struct entry *sle_next; 
     entries;
;

struct slisthead  
    struct entry *slh_first; 
;

可以看到,和我们初学时定义的不太一样,初学者不太可能把第 4、9 行用结构体包起来。

SLIST_INIT

我们继续看。

    struct entry *n1, *n2, *n3, *np;
    struct slisthead head;      /* Singly linked list head */
    SLIST_INIT(&head);          /* Initialize the queue */

1:定义了 3 个指向节点的指针;

2:定义表示表头的结构体变量 head,slisthead 要和前面的一致;

3:宏替换后是 (&head)->slh_first = NULL; 意思是初始化为一个空的链表,头指针指向 NULL

SLIST_INSERT_HEAD

    n1 = malloc(sizeof(struct entry));      /* Insert at the head */
    SLIST_INSERT_HEAD(&head, n1, entries);

1:为节点分配内存,这里省略了对返回指的检查;

2:宏替换后是

(n1)->entries.sle_next = (&head)->slh_first; 
(&head)->slh_first = (n1); 

典型的头插。SLIST_INSERT_HEAD(&head, n1, entries) 的意思是:把 n1 节点插入到链表 head 的头部;第一个参数是表头的地址,第二参数是待插入的节点的地址,第三个参数是无标签结构体的成员名,和之前的要一致。

SLIST_INSERT_AFTER

    n2 = malloc(sizeof(struct entry));      /* Insert after */
    SLIST_INSERT_AFTER(n1, n2, entries);

2:宏替换后是

(n2)->entries.sle_next = (n1)->entries.sle_next;
(n1)->entries.sle_next = (n2);

用大白话说就是把 n1 后面的节点接在 n2 后面,再把 n2 接到 n1 后面,所以:

SLIST_INSERT_AFTER(n1, n2, entries) 的意思是把节点 n2 插入到 n1 的后面。n1、n2 都是节点的地址,entries 是无标签结构体的成员名,和之前的要一致。

SLIST_REMOVE

    SLIST_REMOVE(&head, n2, entry, entries);/* Deletion */
    free(n2);

这个宏替换有点复杂:

if ((&head)->slh_first == (n2))  
	((&head))->slh_first = ((&head))->slh_first->entries.sle_next; 
 
else  
    struct entry *curelm = (&head)->slh_first; 
    while(curelm->entries.sle_next != (n2)) 
        curelm = curelm->entries.sle_next; 
    curelm->entries.sle_next = curelm->entries.sle_next->entries.sle_next; 	
 

1:看看要删除的节点是不是第一个节点,如果是,就删除;如果不是,走 else 分支

5:取第一个节点为当前节点

6:判断当前节点的下一个节点是不是要删除的节点,如果是,while 语句结束,执行第 8 行,删除之。

总结,SLIST_REMOVE(&head, n2, entry, entries) 的意思是:

第一个参数是表头的地址,第二参数是待删除的节点的地址,第三和第四个参数要和最开始定义结构体的时候保持一致,比如 SLIST_ENTRY(entry) entries 中的 entry、entries

SLIST_FIRST 和 SLIST_REMOVE_HEAD

    n3 = SLIST_FIRST(&head);
    SLIST_REMOVE_HEAD(&head, entries);      /* Deletion from the head */
    free(n3);

宏替换是:

n3 = ((&head)->slh_first);
(&head)->slh_first = (&head)->slh_first->entries.sle_next;

SLIST_FIRST (&head) 这个宏就是取第一个节点的地址,参数是表头的地址;

2:删除第一个节点

为什么会有第 1 行呢?如果不在这个时候保存第一个节点的地址,那么删除后,就无法获得其地址了,也就无法执行第 3 行的释放空间了。所以,这个例子给我们提供了标准的头删操作。

SLIST_REMOVE_HEAD(&head, entries) 这个宏的意思是删除第一个节点,第一个参数是表头的地址,entries 是无标签结构体的成员名,和之前的要一致。

SLIST_FOREACH

    for (int i = 0; i < 5; i++) 
        n1 = malloc(sizeof(struct entry));
        SLIST_INSERT_HEAD(&head, n1, entries);
        n1->data = i;
    

    /* Forward traversal */
    SLIST_FOREACH(np, &head, entries)
        printf("%i\\n", np->data);

3:SLIST_INSERT_HEAD 这个在前面说了,就是头插

4:宏替换后,是

for((np) = (&head)->slh_first; (np); (np) = (np)->entries.sle_next)
    printf("%i\\n", np->data);

典型的遍历。注意,这种遍历是不能删除的,因为如果把 np 指向的节点删除了,

(np)->entries.sle_next 这句就不对了。

SLIST_FOREACH(np, &head, entries) 用来遍历链表的每个节点。第一个参数是临时变量,指向当前的节点,第二个参数是表头的地址,第三个 entries 是无标签结构体的成员名,和之前的一致。

这个例子就这一个地方是有打印,打印的结果是:

4
3
2
1
0

因为是头插,所以先插入的会在链表的末尾。遍历的顺序是从头到尾,所以顺序是 4,3,2,1,0

SLIST_EMPTY 和 SLIST_INIT

    while (!SLIST_EMPTY(&head))            /* List deletion */
        n1 = SLIST_FIRST(&head);
        SLIST_REMOVE_HEAD(&head, entries);
        free(n1);
    

2-4 行就不解释了,前文说过了。

SLIST_EMPTY(&head) 宏展开是:

(&head)->slh_first == NULL,就是判断链表是否为空。

附录 queue.h

/*
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
 * $FreeBSD: src/sys/sys/queue.h,v 1.32.2.7 2002/04/17 14:21:02 des Exp $
 */

#ifndef _QUEUE_H_
#define	_QUEUE_H_

#ifdef __cplusplus
extern "C" 
#endif

/*
 * This file defines five types of data structures: singly-linked lists,
 * singly-linked tail queues, lists, tail queues, and circular queues.
 *
 * A singly-linked list is headed by a single forward pointer. The elements
 * are singly linked for minimum space and pointer manipulation overhead at
 * the expense of O(n) removal for arbitrary elements. New elements can be
 * added to the list after an existing element or at the head of the list.
 * Elements being removed from the head of the list should use the explicit
 * macro for this purpose for optimum efficiency. A singly-linked list may
 * only be traversed in the forward direction.  Singly-linked lists are ideal
 * for applications with large datasets and few or no removals or for
 * implementing a LIFO queue.
 *
 * A singly-linked tail queue is headed by a pair of pointers, one to the
 * head of the list and the other to the tail of the list. The elements are
 * singly linked for minimum space and pointer manipulation overhead at the
 * expense of O(n) removal for arbitrary elements. New elements can be added
 * to the list after an existing element, at the head of the list, or at the
 * end of the list. Elements being removed from the head of the tail queue
 * should use the explicit macro for this purpose for optimum efficiency.
 * A singly-linked tail queue may only be traversed in the forward direction.
 * Singly-linked tail queues are ideal for applications with large datasets
 * and few or no removals or for implementing a FIFO queue.
 *
 * A list is headed by a single forward pointer (or an array of forward
 * pointers for a hash table header). The elements are doubly linked
 * so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before
 * or after an existing element or at the head of the list. A list
 * may only be traversed in the forward direction.
 *
 * A tail queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or
 * after an existing element, at the head of the list, or at the end of
 * the list. A tail queue may be traversed in either direction.
 *
 * A circle queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or after
 * an existing element, at the head of the list, or at the end of the list.
 * A circle queue may be traversed in either direction, but has a more
 * complex end of list detection.
 *
 * For details on the use of these macros, see the queue(3) manual page.
 *
 *
 *                      SLIST   LIST    STAILQ  TAILQ   CIRCLEQ
 * _HEAD                +       +       +       +       +
 * _HEAD_INITIALIZER    +       +       +       +       +
 * _ENTRY               +       +       +       +       +
 * _INIT                +       +       +       +       +
 * _EMPTY               +       +       +       +       +
 * _FIRST               +       +       +       +       +
 * _NEXT                +       +       +       +       +
 * _PREV                -       -       -       +       +
 * _LAST                -       -       +       +       +
 * _FOREACH             +       +       +       +       +
 * _FOREACH_REVERSE     -       -       -       +       +
 * _INSERT_HEAD         +       +       +       +       +
 * _INSERT_BEFORE       -       +       -       +       +
 * _INSERT_AFTER        +       +       +       +       +
 * _INSERT_TAIL         -       -       +       +       +
 * _REMOVE_HEAD         +       -       +       -       -
 * _REMOVE              +       +       +       +       +
 *
 */

/*
 * Singly-linked List declarations.
 */
#define	SLIST_HEAD(name, type)                          \\
struct name                                            \\
    struct type *slh_first;	/* first element */         \\


#define	SLIST_HEAD_INITIALIZER(head)                    \\
     NULL 

#define	SLIST_ENTRY(type)                               \\
struct                                                 \\
    struct type *sle_next;  /* next element */          \\


/*
 * Singly-linked List functions.
 */
#define SLIST_EMPTY(head)   ((head)->slh_first == NULL)

#define SLIST_FIRST(head)   ((head)->slh_first)

#define SLIST_FOREACH(var, head, field)                 \\
    for ((var) = SLIST_FIRST((head));                   \\
        (var);                                          \\
        (var) = SLIST_NEXT((var), field))

#define SLIST_INIT(head) do                            \\
        SLIST_FIRST((head)) = NULL;                     \\
 while (0)

#define SLIST_INSERT_AFTER(slistelm, elm, field) do            \\
    SLIST_NEXT((elm), field) = SLIST_NEXT链表之SLIST

链表之LIST

链表之LIST

链表之LIST

数据结构线性表之实现单循环链表

数据结构(线性表之单链表)