慧销平台ThreadPoolExecutor内存泄漏分析

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了慧销平台ThreadPoolExecutor内存泄漏分析相关的知识,希望对你有一定的参考价值。

作者:京东零售 冯晓涛

问题背景

京东生旅平台慧销系统,作为平台系统对接了多条业务线,主要进行各个业务线广告,召回等活动相关内容与能力管理。

最近根据告警发现内存持续升高,每隔2-3天会收到内存超过阈值告警,猜测可能存在内存泄漏的情况,然后进行排查。根据24小时时间段内存监控可以发现,容器的内存在持续上升:


慧销平台ThreadPoolExecutor内存泄漏分析_初始化

问题排查

初步估计内存泄漏,查看24小时时间段jvm内存监控,排查jvm内存回收情况:

慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_02

YoungGC和FullGC情况:


慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_03

通过jvm内存分析和YoungGC与FullGC执行情况,可以判断可能原因如下:

1、 存在YoungGC但是没有出现FullGC,可能是对象进入老年代但是没有到达FullGC阈值,所以没有触发FullGC,对象一直存在老年代无法回收

2、 存在内存泄漏,虽然执行了YoungGC,但是这部分内存无法被回收

通过线程数监控,观察当前线程情况,发现当前线程数7427个,并且还在不断上升,基本判断存在内存泄漏,并且和线程池的不当使用有关:

慧销平台ThreadPoolExecutor内存泄漏分析_初始化_04

通过JStack,获取线程堆栈文件并进行分析,排查为什么会有这么多线程:


慧销平台ThreadPoolExecutor内存泄漏分析_初始化_05

慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_06

发现通过线程池创建的线程数达7000+:

慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_07

代码分析

分析代码中ThreadPoolExecutor的使用场景,发现在一个worker公共类中定义了一个线程池,worker执行时会使用线程池进行异步执行。

public class BackgroundWorker 

private static ThreadPoolExecutor threadPoolExecutor;

static
init(15);


public static void init()
init(15);


public static void init(int poolSize)
threadPoolExecutor =
new ThreadPoolExecutor(3, poolSize, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());


public static void shutdown()
if (threadPoolExecutor != null && !threadPoolExecutor.isShutdown())
threadPoolExecutor.shutdownNow();



public static void submit(final Runnable task)
if (task == null)
return;

threadPoolExecutor.execute(() ->
try
task.run();
catch (Exception e)
e.printStackTrace();

);


广告缓存刷新worker使用线程池的代码:

public class AdActivitySyncJob 

@Scheduled(cron = "0 0/5 * * * ?")
public void execute()
log.info("AdActivitySyncJob start");
List<DicDTO> locationList = locationService.selectLocation();
if (CollectionUtils.isEmpty(locationList))
return;


//中间省略部分无关代码

BackgroundWorker.init(40);
locationCodes.forEach(locationCode ->
showChannelMap.forEach((key,value)->
BackgroundWorker.submit(new Runnable()
@Override
public void run()
log.info("AdActivitySyncJob,locationCode:,showChannel:",locationCode,value);
Result<AdActivityDTO> result = notLoginAdActivityOuterService.getAdActivityByLocationInner(locationCode, ImmutableMap.of("showChannel", value));
LocalCache.AD_ACTIVITY_CACHE.put(locationCode.concat("_").concat(value), result);

);
);
);
log.info("AdActivitySyncJob end");


@PostConstruct
public void init()
execute();

原因分析:猜测是worker每次执行,都会执行init方法,创建新的线程池,但是局部创建的线程池并没有被关闭,导致内存中的线程池越来越多,ThreadPoolExecutor在使用完成后,如果不手动关闭,无法被GC回收。

分析验证

验证局部线程池ThreadPoolExecutor创建后,如果不手动关闭,是否会被GC回收:

public class Test 
private static ThreadPoolExecutor threadPoolExecutor;

public static void main(String[] args)
for (int i=1;i<100;i++)
//每次均初始化线程池
threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

//使用线程池执行任务
for(int j=0;j<10;j++)
submit(new Runnable()
@Override
public void run()

);



//获取当前所有线程
ThreadGroup group = Thread.currentThread().getThreadGroup();
ThreadGroup topGroup = group;
// 遍历线程组树,获取根线程组
while (group != null)
topGroup = group;
group = group.getParent();

int slackSize = topGroup.activeCount() * 2;
Thread[] slackThreads = new Thread[slackSize];
// 获取根线程组下的所有线程,返回的actualSize便是最终的线程数
int actualSize = topGroup.enumerate(slackThreads);
Thread[] atualThreads = new Thread[actualSize];
System.arraycopy(slackThreads, 0, atualThreads, 0, actualSize);
System.out.println("Threads size is " + atualThreads.length);
for (Thread thread : atualThreads)
System.out.println("Thread name : " + thread.getName());



public static void submit(final Runnable task)
if (task == null)
return;

threadPoolExecutor.execute(() ->
try
task.run();
catch (Exception e)
e.printStackTrace();

);

输出:

Threads size is 302

Thread name : Reference Handler

Thread name : Finalizer

Thread name : Signal Dispatcher

Thread name : main

Thread name : Monitor Ctrl-Break

Thread name : pool-1-thread-1

Thread name : pool-1-thread-2

Thread name : pool-1-thread-3

Thread name : pool-2-thread-1

Thread name : pool-2-thread-2

Thread name : pool-2-thread-3

Thread name : pool-3-thread-1

Thread name : pool-3-thread-2

Thread name : pool-3-thread-3

Thread name : pool-4-thread-1

Thread name : pool-4-thread-2

Thread name : pool-4-thread-3

Thread name : pool-5-thread-1

Thread name : pool-5-thread-2

Thread name : pool-5-thread-3

Thread name : pool-6-thread-1

Thread name : pool-6-thread-2

Thread name : pool-6-thread-3

…………

执行结果分析,线程数量302个,局部线程池创建的核心线程没有被回收。

修改初始化线程池部分:

//初始化一次线程池
threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

for (int i=1;i<100;i++)
//使用线程池执行任务
for(int j=0;j<10;j++)
submit(new Runnable()
@Override
public void run()

);


输出:

Threads size is 8

Thread name : Reference Handler

Thread name : Finalizer

Thread name : Signal Dispatcher

Thread name : main

Thread name : Monitor Ctrl-Break

Thread name : pool-1-thread-1

Thread name : pool-1-thread-2

Thread name : pool-1-thread-3

解决方案

1、只初始化一次,每次执行worker复用线程池

2、每次执行完成后,关闭线程池

BackgroundWorker的定位是后台执行worker均进行线程池的复用,所以采用方案1,每次在static静态代码块中初始化,使用时无需重新初始化。

解决后监控:

jvm内存监控,内存不再持续上升:


慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_08


线程池恢复正常且平稳:


慧销平台ThreadPoolExecutor内存泄漏分析_初始化_09


Jstack文件,观察线程池数量恢复正常:


慧销平台ThreadPoolExecutor内存泄漏分析_初始化_10


Dump文件分析线程池对象数量:


慧销平台ThreadPoolExecutor内存泄漏分析_初始化_11


拓展

1、 如何关闭线程池

线程池提供了两个关闭方法,shutdownNow 和 shutdown 方法。

shutdownNow方法的解释是:线程池拒接收新提交的任务,同时立马关闭线程池,线程池里的任务不再执行。

shutdown方法的解释是:线程池拒接收新提交的任务,同时等待线程池里的任务执行完毕后关闭线程池。

2、 为什么threadPoolExecutor不会被GC回收

threadPoolExecutor =
new ThreadPoolExecutor(3, 15, 1000, TimeUnit.MINUTES, new LinkedBlockingDeque<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());

局部使用后未手动关闭的线程池对象,会被GC回收吗?获取线上jump文件进行分析:


慧销平台ThreadPoolExecutor内存泄漏分析_jvm内存_12


发现线程池对象没有被回收,为什么不会被回收?查看ThreadPoolExecutor.execute()方法:

如果当前线程数小于核心线程数,就会进入addWorker方法创建线程:


慧销平台ThreadPoolExecutor内存泄漏分析_线程池_13

慧销平台ThreadPoolExecutor内存泄漏分析_初始化_14

分析runWorker方法,如果存在任务则执行,否则调用getTask()获取任务:

慧销平台ThreadPoolExecutor内存泄漏分析_初始化_15

慧销平台ThreadPoolExecutor内存泄漏分析_初始化_16

发现workQueue.take()会一直阻塞,等待队列中的任务,因为Thread线程一直没有结束, 存在引用关系:ThreadPoolExecutor->Worker->Thread,因为存在GC ROOT的引用,所以无法被回收 。

以上是关于慧销平台ThreadPoolExecutor内存泄漏分析的主要内容,如果未能解决你的问题,请参考以下文章

美团外卖服务端的测试面试题居然泄……泄……泄……泄密了

美团外卖服务端的测试面试题居然泄……泄……泄……泄密了

线程池ThreadPoolExecutor源码解析

Node.js 流 API 泄​​漏

Java源码解析 - ThreadPoolExecutor 线程池

JUC - 多线程之线程池ThreadPoolExecutor