ThreadLocal弱引用与内存泄漏分析
Posted 帅性而为1号
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ThreadLocal弱引用与内存泄漏分析相关的知识,希望对你有一定的参考价值。
本文对ThreadLocal弱引用进行一些解析,以及ThreadLocal使用注意事项。
ThreadLocal
首先,简单回顾一下,ThreadLocal是一个线程本地变量,每个线程维护自己的变量副本,多个线程互相不可见,因此多线程操作该变量不必加锁,适合不同线程使用不同变量值的场景。
其实现原理这里就不做详细阐述,其数据结构是每个线程Thread类都有个属性ThreadLocalMap,用来维护该线程的多个ThreadLocal变量,该Map是自定义实现的Entry<K,V>[]数组结构,并非继承自原生Map类,Entry其中Key即是ThreadLocal变量本身,Value则是具体该线程中的变量副本值。结构如图:
因此ThreadLocal其实只是个符号意义,本身不存储变量,仅仅是用来索引各个线程中的变量副本。
值得注意的是,Entry的Key即ThreadLocal对象是采用弱引用引入的,如源代码:
static class ThreadLocalMap
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>>
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v)
super(k);
value = v;
本文下面重点分析为何使用弱引用,以及可能存在的问题。
首先看下弱引用。
弱引用
java语言中为对象的引用分为了四个级别,分别为 强引用 、软引用、弱引用、虚引用。
其余三种具体可自行查阅相关资料。
弱引用具体指的是java.lang.ref.WeakReference<T>类。
对对象进行弱引用不会影响垃圾回收器回收该对象,即如果一个对象只有弱引用存在了,则下次GC将会回收掉该对象(不管当前内存空间足够与否)。
再来说说内存泄漏,假如一个短生命周期的对象被一个长生命周期对象长期持有引用,将会导致该短生命周期对象使用完之后得不到释放,从而导致内存泄漏。
因此,弱引用的作用就体现出来了,可以使用弱引用来引用短生命周期对象,这样不会对垃圾回收器回收它造成影响,从而防止内存泄漏。
ThreadLocal中的弱引用
1.为什么ThreadLocalMap使用弱引用存储ThreadLocal?
假如使用强引用,当ThreadLocal不再使用需要回收时,发现某个线程中ThreadLocalMap存在该ThreadLocal的强引用,无法回收,造成内存泄漏。
因此,使用弱引用可以防止长期存在的线程(通常使用了线程池)导致ThreadLocal无法回收造成内存泄漏。
2.那通常说的ThreadLocal内存泄漏是如何引起的呢?
我们注意到Entry对象中,虽然Key(ThreadLocal)是通过弱引用引入的,但是value即变量值本身是通过强引用引入。
这就导致,假如不作任何处理,由于ThreadLocalMap和线程的生命周期是一致的,当线程资源长期不释放,即使ThreadLocal本身由于弱引用机制已经回收掉了,但value还是驻留在线程的ThreadLocalMap的Entry中。即存在key为null,但value却有值的无效Entry。导致内存泄漏。
但实际上,ThreadLocal内部已经为我们做了一定的防止内存泄漏的工作。
即如下方法:
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
private int expungeStaleEntry(int staleSlot)
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len))
ThreadLocal<?> k = e.get();
if (k == null)
e.value = null;
tab[i] = null;
size--;
else
int h = k.threadLocalHashCode & (len - 1);
if (h != i)
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
return i;
private void set(ThreadLocal<?> key, Object value)
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)])
ThreadLocal<?> k = e.get();
if (k == key)
e.value = value;
return;
if (k == null)
replaceStaleEntry(key, value, i);
return;
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
复制代码
上述方法的作用是擦除某个下标的Entry(置为null,可以回收),同时检测整个Entry[]表中对key为null的Entry一并擦除,重新调整索引。
该方法,在每次调用ThreadLocal的get、set、remove方法时都会执行,即ThreadLocal内部已经帮我们做了对key为null的Entry的清理工作。
但是该工作是有触发条件的,需要调用相应方法,假如我们使用完之后不做任何处理是不会触发的。
在该方法中针对脏entry做了这样的处理:
- 如果当前table[i]!=null的话说明hash冲突就需要向后环形查找,若在查找过程中遇到脏entry就通过replaceStaleEntry进行处理;
- 如果当前table[i]==null的话说明新的entry可以直接插入,但是插入后会调用cleanSomeSlots方法检测并清除脏entry
总结
- (强制)在代码逻辑中使用完ThreadLocal,都要调用remove方法,及时清理。
目前我们使用多线程都是通过线程池管理的,对于核心线程数之内的线程都是长期驻留池内的。显式调用remove,一方面是防止内存泄漏,最为重要的是,不及时清除有可能导致严重的业务逻辑问题,产生线上故障(使用了上次未清除的值)。
最佳实践:在ThreadLocal使用前后都调用remove清理,同时对异常情况也要在finally中清理。
- (非规范)对ThreadLocal是否使用全局static修饰的讨论。
在某些代码规范中遇到过这样一条要求:“尽量不要使用全局的ThreadLocal”。关于这点有两种解读。最初我的解读是,因为静态变量的生命周期和类的生命周期是一致的,而类的卸载时机可以说比较苛刻,这会导致静态ThreadLocal无法被垃圾回收,容易出现内存泄漏。另一个解读,我咨询了编写该规范的对方解释是,如果流程中改变了变量值,下次复用该流程可能导致获取到非预期的值。
但实际上,这两个解读都是不必要的,首先,静态ThreadLocal资源回收的问题,即使ThreadLocal本身无法回收,但线程中的Entry是可以通过remove清理掉的也就不会出现泄漏。第二种解读,多次复用值改变的问题,其实在调用remove后也不会出现。
而如果ThreadLocal不加static,则每次其所在类实例化时,都会有重复ThreadLocal创建。这样即使线程在访问时不出现错误也有资源浪费。
因此,ThreadLocal一般加static修饰,同时要遵循第一条及时清理。
notice
- JVM利用设置ThreadLocalMap的Key为弱引用,来避免内存泄露。
- JVM利用调用remove、get、set方法的时候,回收弱引用。
- 当ThreadLocal存储很多Key为null的Entry的时候,而不再去调用remove、get、set方法,那么将导致内存泄漏。
- 当使用static ThreadLocal的时候,延长ThreadLocal的生命周期,那也可能导致内存泄漏。因为,static变量在类未加载的时候,它就已经加载,当线程结束的时候,static变量不一定会回收。那么,比起普通成员变量使用的时候才加载,static的生命周期加长将更容易导致内存泄漏危机
以上是关于ThreadLocal弱引用与内存泄漏分析的主要内容,如果未能解决你的问题,请参考以下文章